Smith-Waterman
Liang Liu
2021-04-16
The Smith-Waterman algorithm is a dynamic programming for pairwise alignment. Given the score function and two sequences, this algorithm can find the local best alignment.
Define a score function and two input sequences for alignment
score=c(1,-1,-1)
seq1="AGTC"
seq2="ACGTC"
Create matrix M
ncol = nchar(seq1)+1
nrow = nchar(seq2)+1
M = matrix(0, ncol = ncol, nrow = nrow)
colnames(M) = c("",unlist(strsplit(seq1,split="")))
rownames(M) = c("",unlist(strsplit(seq2,split="")))
coln = c("",unlist(strsplit(seq1,split="")))
rown = c("",unlist(strsplit(seq2,split="")))
move = M
Initialize matrix M
for(i in 2:ncol) M[1,i] = M[1,i-1] + max(0,score[3])
for(i in 2:nrow) M[i,1] = M[i-1,1] + max(0,score[3])
for(i in 2:ncol) move[1,i] = 1
for(i in 2:nrow) move[i,1] = 2
M
Fill in matrix M
for(i in 2:nrow){
for(j in 2:ncol){
h_score = M[i,j-1] + score[3]
v_score = M[i-1,j] + score[3]
if(coln[j] == rown[i]) d_score = M[i-1,j-1] + score[1]
else d_score = M[i-1,j-1] + score[2]
x = c(h_score,v_score,d_score)
M[i,j] = max(x)
move[i,j] = which(x == M[i,j])[1]
if(M[i,j]<0) M[i,j]=0
}
}
M
Tracing back to find the alignment
alignment = matrix("",nrow=2,ncol=nrow+ncol)
i = nrow
j = ncol
x = move[i,j]
index = nrow+ncol
while(x != 0){
if(x == 3) {
alignment[1,index] = coln[j]
alignment[2,index] = rown[i]
i = i-1
j = j-1
index = index-1
}else if(x == 2){
alignment[1,index] = "-"
alignment[2,index] = rown[i]
i = i-1
index = index-1
}else{
alignment[1,index] = coln[j]
alignment[2,index] = "-"
j = j-1
index = index-1
}
x = move[i,j]
}
Show the alignment
alg=rep("",2)
alg[1]=paste(alignment[1,], collapse="")
alg[2]=paste(alignment[2,], collapse="")
result = list(M=as.matrix, score = as.numeric, alignment=as.character)
result$M = M
result$score = M[nrow,ncol]
result$alignment = alg
result
A wrapper function for Smith-Waterman algorithm
Smith_Waterman <- function(seq1, seq2, score){
ncol = nchar(seq1)+1
nrow = nchar(seq2)+1
#create matrix M
M = matrix(0, ncol = ncol, nrow = nrow)
colnames(M) = c("",unlist(strsplit(seq1,split="")))
rownames(M) = c("",unlist(strsplit(seq2,split="")))
coln = c("",unlist(strsplit(seq1,split="")))
rown = c("",unlist(strsplit(seq2,split="")))
move = M
#fill in the first row and first column of M,N
for(i in 2:ncol) M[1,i] = M[1,i-1] + max(0,score[3])
for(i in 2:nrow) M[i,1] = M[i-1,1] + max(0,score[3])
for(i in 2:ncol) move[1,i] = 1
for(i in 2:nrow) move[i,1] = 2
#fill in M
for(i in 2:nrow){
for(j in 2:ncol){
h_score = M[i,j-1] + score[3]
v_score = M[i-1,j] + score[3]
if(coln[j] == rown[i]) d_score = M[i-1,j-1] + score[1]
else d_score = M[i-1,j-1] + score[2]
x = c(h_score,v_score,d_score)
M[i,j] = max(x)
move[i,j] = which(x == M[i,j])[1]
if(M[i,j]<0) M[i,j]=0
}
}
alignment = matrix("",nrow=2,ncol=nrow+ncol)
i = nrow
j = ncol
x = move[i,j]
index = nrow+ncol
while(x != 0){
if(x == 3) {
alignment[1,index] = coln[j]
alignment[2,index] = rown[i]
i = i-1
j = j-1
index = index-1
}else if(x == 2){
alignment[1,index] = "-"
alignment[2,index] = rown[i]
i = i-1
index = index-1
}else{
alignment[1,index] = coln[j]
alignment[2,index] = "-"
j = j-1
index = index-1
}
x = move[i,j]
}
alg=rep("",2)
alg[1]=paste(alignment[1,], collapse="")
alg[2]=paste(alignment[2,], collapse="")
result = list(M=as.matrix, score = as.numeric, alignment=as.character)
result$M = M
result$score = M[nrow,ncol]
result$alignment = alg
result
}
seq1="ATTCCTGTTCCCGTC"
seq2="ATCCTGCGTTCGTC"
Smith_Waterman(seq1,seq2,score=c(1,-1,-1))